
A NOTE ON THE SYMMETRY PROPERTIES OF
LÖWDIN’S ORTHOGONALIZATION SCHEMES

András T. ROKOBa, Ágnes SZABADOSb1 and Péter R. SURJÁNb2,*
a Chemical Research Center, Hungarian Academy of Sciences,
H-1525 Budapest, P.O. Box 17, Hungary; e-mail: rokoba@chemres.hu

b Eötvös University, Laboratory of Theoretical Chemistry,
H-1518 Budapest 112, P.O. Box 32, Hungary; e-mail: 1 szabados@chem.elte.hu,
2 surjan@chem.elte.hu

Received April 21, 2008
Accepted August 8, 2008

Published online September 17, 2008

Dedicated to Professor Rudolf Zahradník on the occasion of his 80th birthday.

We point out that the well-known symmetry properties of the symmetrically and
canonically orthogonalized vectors hold only under certain conditions on the overlapping
vectors. In particular, the matrix of the transformation induced by the symmetry operator
must be unitary. This requirement is not fulfilled if Cartesian d or f functions are used in
the basis set. If such functions are present, canonically orthogonalized orbitals do not trans-
form according to representations of the molecular point group; nor do Löwdin ortho-
gonalized vectors preserve symmetry relation of the original vectors.
Keywords: Canonical orthogonalization; Symmetric orthogonalization; Slater–Koster theo-
rem.

In quantum chemistry, one often deals with non-orthogonal vectors which
may be orthogonalized for convenience. Among the infinitely many possi-
ble orthogonalization procedures, we list only four, which all have their
own significances.

1. The Gram–Schmidt orthogonalization is a successive procedure. This is
the method of choice if one does not want to alter the subspace obtained in
the previous step; e.g., in the case of orthogonalizing valence functions to
the cores.

2. Mayer’s orthogonalization1,2 leaves only the first vector invariant, but
it applies an explicit (non-successive) transformation to get a set of ortho-
gonal vectors.
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3. The canonical orthogonalization procedure3 transforms the vectors
with the eigenvectors of the overlap matrix S. The orthogonal MOs belong-
ing to the same overlap eigenvalue form representations of the symmetry
group of the system.

4. Symmetric orthogonalization4 transforms the vectors by the S–1/2 ma-
trix. This procedure is usually called Löwdin orthogonalization, although
the canonical procedure 3 was also discussed extensively by him. The sym-
metric orthogonalization possesses two remarkable features: the Löwdin
vectors

a) are least distorted from the original ones in the least-squares sense;
b) bear the same symmetry as the original ones. This statement is known

also as the Slater–Koster theorem5, and it is the reason for which this
scheme is often called ‘symmetric’ orthogonalization.

In this note, we will revisit symmetry properties of the latter two proce-
dures using atomic orbitals (AOs) as primary non-orthogonal vectors. We
will point out that these are valid only if certain conditions are fulfilled by
these AOs. In particular, we show that redundant Cartesian (i.e., 6d, 10f,
etc.) sets do not qualify.

This is not the first caveat in the literature concerning the use of
Cartesian functions together with Löwdin orthogonalization. In a recent
letter6, Mayer called attention to the fact that the so-called Löwdin charges
(populations of Löwdin orthogonalized AOs) are rotation-invariant only
if no Cartesian d AOs are included in the basis set. This problem can be
cured by orthogonalizing 6d or 10f functions prior to use, as proposed
by Davidson7,8. This problem was revisited and further clarified in ref.9.

In this note, we sketch the essence of the problem of symmetry proper-
ties from the quantum chemical point of view. More detailed and more
strict mathematical formulation will be published elsewhere.

SYMMETRY PROPERTIES OF ORTHOGONALIZED VECTORS

Let the functions ϕi form an overlapping set with metric Sik = 〈ϕ i|ϕk〉 . The
symmetrically (Löwdin) orthogonalized vectors are

ψ ϕk ik i
i

L = −∑ ( )/S 1 2 (1)
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while the canonically orthogonalized and normalized vectors result from a
transformation by the S-eigenvectors:

ψ
σ

ϕk
c

k

ik i
i

U= ∑1
(2)

with

S U Uji ik k jk
i

=∑ σ . (3)

In the appendix of their seminal paper, Slater and Koster5 proved the fol-
lowing theorem: Let $T be a symmetry operator of the system. Then, the
transformation properties of symmetrically orthogonalized vectors (1) are
the same as those of the original non-orthogonal set, i.e. the matrices repre-
senting $T in both sets are identical. This orthogonalization thus preserves
the symmetry of the basis.

Symmetry properties of canonically orthogonalized vectors (2) were
treated by Löwdin10. He concluded that these orbitals are eigenvectors of
the symmetry operations of the molecular point group.

We do not repeat the proofs here, just mention that the derivation of
both properties exploit the fact that the matrix representing the trans-
formation in the original, non-orthogonal basis is unitary. Although sym-
metry operations as operators are, of course, unitary, for the matrices
representing them in a non-orthogonal set this is not necessarily true. This
can be easily seen by representing the operator relation

$ $ $†TT I= (4)

in an overlapping basis to yield

T T Sij jk kl
jk

il( ) †S −∑ =1 (5)

where T Tij i j= 〈 〉ϕ ϕ| $ . Rewriting (5) to the form

S–1TS–1T† = I (6)
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convinces us that neither T nor t = S–1T are unitary in general. However, if
T and S (hence, T and S–1) commute, the last equation can be transformed
to

(S–1T)(S–1T†) = (S–1T)(TS–1)† = (S–1T)(S–1T)† = tt† = I (7)

which shows that in this case t = S–1T, which actually performs the symme-
try mapping in the non-orthogonal basis, is unitary.

We can see that both Slater and Koster5 and Löwdin10 tacitly assumed
that the representing matrix of the symmetry operation commutes with the
overlap matrix. The question arises therefore whether this holds in all
AO-basis sets. We will see that the answer is no.

Let us investigate the unitary nature of t. There are important special
cases when it is unitary even if S ≠ I. As mentioned, t is the matrix which
performs the mapping. In the simplest example we consider only s-type ba-
sis orbitals on each atomic center. The symmetry transformation maps an
atom to another one, and it does the same to atomic s-orbitals. Hence t is
a permutation matrix, and as such, it must be unitary. (Needless to say that
we assume that symmetry-equivalent atoms have equivalent basis func-
tions.)

A more complicated case is when p-type AOs enter the basis set, too. Let
us consider real orbitals px, py, pz. Then a particular p function is generally
not mapped directly to another p function on the other atom, but into a
linear combination of the three p’s. The associated mapping matrix t is,
therefore, no longer a simple permutation matrix. However, since the p
subset on each atom is orthogonal, the local 3-by-3 transformation matrix
is unitary. Therefore, p orbitals do not destroy the unitary nature of t.

The above arguments also hold if orthogonal spherical d or f (etc.) func-
tions enter the basis set. If, however, one uses Cartesian sets, the situation
changes6: the symmetry transformation maps a d function into the linear
combination of the non-orthogonal d subset of the target atom, thus the
mapping matrix t will no longer be unitary. As a consequence, T and S do
not commute and both Löwdin’s orthogonalization schemes lose their sym-
metry properties mentioned above – subsets of canonically orthogonalized
vectors corresponding to the same overlap eigenvalue do not necessarily
span representations, and, in addition, symmetrically orthogonalized vec-
tors transform differently from the original ones.
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EXAMPLES

We illustrate the above finding for the canonical orthogonalization on the
example of the scandium(III) hydride molecule11, ScH3, which is the sim-
plest possible molecule with valence electrons from d AOs. Its equilibrium
structure is planar, exhibiting D3h symmetry (Fig. 1). We applied the canon-
ical orthogonalization procedure to a minimal Gaussian AO basis set con-
sisting of a single s function on the hydrogens and a 4s3p1d set on atom Sc,
using spherical or Cartesian d functions.

One selected canonically orthogonalized AO for the 5d and one for the
6d case are presented in Fig. 2. When using 5d functions matrix S reflects
proper D3h symmetry, hence there are degenerate overlap-eigenvalues, as
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FIG. 1
D3h structure of scandium(III) hydride

FIG. 2
Contour plot of the third (in order of increasing S-eigenvalue) canonically orthogonalized
atomic orbital for ScH3: minimal basis using 5d set (a), minimal basis using 6d set (b)

(a) (b)



the group is non-Abelian and [T,S] = 0 for each symmetry operator $T of the
group. The lowest (in the order of S-eigenvalues) nondegenerate canonical-
ly orthogonalized orbital of the 5d case, plotted in Fig. 2a, is totally sym-
metric, as one expects.

The corresponding AO from the 6d set is shown in Fig. 2b. Use of 6d
orbitals induces [T,S] ≠ 0, eigenvalues of S are thus not necessarily degener-
ate (and, indeed, are not), reflecting loss of the symmetry of the matrix.
The symmetry of canonically orthogonalized vectors is also destroyed: no
traces of three-fold symmetry can be seen in Fig. 2b.

It is more difficult to find such a pictorial example for the symmetric
orthogonalization: preservation of the symmetry of the non-orthogonal set
can be most easily seen if the operator induces permutations between AOs,
but then [T,S] = 0 is ensured. We again turn to d orbitals and show that the
matrix representation of the symmetry operator is not invariant with re-
spect to Löwdin orthogonalization if 6d sets are used. We will consider a
free atom with a set of normalized (but certainly not orthogonal) Cartesian
d functions (N1 and N2 are normalizing factors):
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(8)

Rotation by an arbitrary angle α around the z axis is a symmetry operator of
this system. As a result of a lengthy but simple calculation the matrix repre-
senting the operator in this set can be written as:
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t ( )
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This may be transformed into the basis of the respective Löwdin ortho-
gonalized vectors, yielding
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It is easy to see that the Slater–Koster theorem does not hold for arbitrary α:
transformation matrices t and tL are different, as a consequence of t being
non-unitary. Noteworthy, t = tL if α is a multiple of π/2: these ‘rotations’
correspond to permuting and changing orientation of the Cartesian axes,
which can again be described by a unitary matrix on this basis.
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